
Journal of Engineering Mathematics40: 91–108, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

A priori evaluation of dynamic subgrid models of turbulence in
square duct flow

PETER L. O’SULLIVAN∗, SEDAT BIRINGEN and ASMUND HUSER1
Department of Aerospace Engineering, University of Colorado at Boulder, Boulder, CO 80309-0429, U.S.A.
e-mail: biringen@spot.colorado.edu
1Safety & Process Advisory Services/DN670, Det Norske Veritas, N-1322 Høvik, Norway

Received 8 April 1999; accepted in revised form 17 April 2000

Abstract. A priori tests of two dynamic subgrid-scale (SGS) turbulence models have been performed using a
highly resolved direct numerical simulation database for the case of turbulent incompressible flow in a straight
duct of square cross-section. The model testing is applied only to the homogeneous flow direction where grid
filtering can be applied without the introduction of commutation errors. The first SGS model is the dynamic
(Smagorinsky/eddy viscosity) SGS model (DSM) developed by Germanoet al.[1] while the second is the dynamic
two parameter (mixed) model (DTM) developed by Salvetti and Banerjee [2]. For the Smagorinsky model we have
used both the Fourier cut-off filter and a modified Gaussian filter which has the property that it removes aliasing
errors in consistenta priori model-testing for spectral-based datasets. Results largely consistent with those found
for plane channel flow are observed but with some slight differences in the corner regions. As found in prior
studies of this sort, there is a very poor correlation of the modelled and exact subgrid-scale dissipation in the case
of the DSM. The DSM over-predicts subgrid-scale dissipation on average. Instantaneously, the model provides an
inaccurate representation of subgrid-scale dissipation, in general underestimating the magnitude by approximately
one order of magnitude. On the other hand, the DTM shows excellent agreement with the exact SGS dissipation
over most of the duct cross-section with a correlation coefficient of approximately 0·9.
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1. Introduction

Turbulent flow in a duct of square cross-section may be considered a generic testbed for the
study of complex geometry flows in a similar fashion to the backward-facing step problem,
for example. Turbulent flow along sharp corner regions induces a mean secondary flow of the
second kind, as classified by Prandtl [3, 4]. The mean motion is towards the corner along the
corner bisector and is caused by mean gradients in Reynolds stress. Although the magnitude
of the secondary vortical flow is quite weak (around 2–3% of the bulk streamwise velocity)
the ramifications for wall shear, heat transfer rates and transport of passive particles is quite
significant [5, 6] .

The generation of mean streamwise vorticity in the corner regions has engineering im-
plications for such problems as wing-body junctures with effects on lift to drag ratios etc.
Therefore, it is important for any engineering turbulence models to correctly capture the mean
secondary motion together with an accurate description of time-dependent flow structures
(e.g., for unsteady or non-equilibrium flows). The large-eddy simulation (LES) technique is an
evolving computational methodology which (ostensibly) permits accurate phase information
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for the large scale coherent structures/motions in the flow while providing an effective subgrid-
scale (SGS) dissipation term in the model equations. The most widely used SGS model is the
eddy viscosity-based model for SGS turbulent stress which posits a linear (tensorial) relation-
ship between SGS stress and the resolved strain rate tensor. Germanoet al. [1] refined this
modelling assumption to compute the Smagorinsky coefficient as a spatially and temporally
varying quantity in the flow and hence developed a dynamic approach to SGS modelling.

The dynamic procedure (and its various refinements) has proven extremely effective in LES
of canonical flows such ase.g., plane channel flow. It has found some application in complex
geometry flows (e.g., the backward-facing step) with satisfactory results [7]. For turbulent flow
in square ducts, Madabhushi and Vanka [8] performed an LES using the (constant coefficient)
Smagorinsky model with some degree of success. However, near the walls and especially
in the corner regions, their LES results did not compare well with experiment. Balaras and
Benocci [9] performed LES using the dynamic Smagorinsky model (DSM) in conjunction
with wall conditions and again obtained reasonable qualitative results but did not accurately
capture the flow behavior (Reynolds stress and RMS velocity) near walls and in the corners.

Salvetti and Banerjee [2] developed a refined, dynamic two parameter mixed SGS model
(DTM), following from the work of Zanget al. [10] whose mixed model only contained
one free parameter. This model combines the good correlation properties of the scale-similar
model [11] with the dissipative nature of the eddy viscosity model. Their two parameter mixed
model exhibited superior correlations with the exact SGS stress and SGS dissipation. Salvetti
et al. [2] then went on to perform actual LES for a free-surface flow and verified a significant
improvement in agreement by using their DTM compared with the simpler DSM. Horiuti [13]
developed a variant of the DTM and also proposed a three parameter model (as yet untested
though in eithera priori or a posterioritests). He studied the merits of several mixed models
and the DSM in both plane channel flow and a mixing layer flow and corroborated the findings
of Salvetti and Banerjee [2] ina priori tests. In actual LES of these two flows, Horiuti then
went on to confirm the correctness of the outcome of hisa priori tests.

The aim of the current work is to assess the likely performance of both the DSM [1] and
the DTM [2] subgrid-scale models in large-eddy simulations of streamwise corner flows. This
is accomplished by recourse toa priori model testing utilizing a database generated in a low
Reynolds number direct numerical simulation. For the DSM we have studied both the Fourier
cut-off filter and a modified Gaussian filter (to be explained in Section 5) as applied to the
periodic streamwise direction; for the DTM we have used the modified Gaussian filter. In a
fully general method for complex flows, the SGS filtering has to be done without the existence
of homogeneous directions. Hence, the next step would be to implement the present method
with an SGS filter applied in all three directions. An approach of this sort is performed ine.g.
Zanget al. [10], Salvetti and Banerjee [2] and Najjar and Tafti [14]. However, filtering in the
wall-normal directions introduces second order commutation errors which we avoid in this
work (although very recently Vasilyevet al. [15] have developed techniques to address this
problem).

2. Numerical methods

The problem that we consider is that of turbulent incompressible flow in a straight square duct.
The flow geometry and co-ordinate system are shown in Figure 1. The length of each side of
the duct isD and the friction velocity is denoted byu2

τ = ν〈∂u/∂n〉 where〈∂u/∂n〉 denotes
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Figure 1. Flow geometry and co-ordinate system.

the mean velocity gradient averaged around the cross-section of the duct andν is the kinematic
viscosity. The friction velocity Reynolds number was taken to be Reτ = uτD/ν = 600 in this
study. In closely related previous work [16], and in the present work, the duct length was
taken to beLx = 6·4D which was determined to be sufficiently large (based on two point
correlation data) to justify the use of periodic boundary conditions in the streamwise direction.
The resulting non-dimensional Navier–Stokes equations are

∂ui

∂t
+ ∂

∂xj
uiuj = 4δi1− ∂

∂xi
p + 1

Re
∇2ui (1)

and continuity

∂ui

∂xi
= 0.

The co-ordinate directions are interchangeably labelledx, y, z or 1, 2, 3 andδij is the isotropic
tensor. The equations are discretized in space using a Fourier Galerkin procedure in the
streamwise (x) direction and fifth order finite differences in the two cross-stream (y and
z) directions. The cross-stream (v andw) equations are solved on a staggered mesh which
avoids spurious oscillations when the pressure Poisson equation is solved to render the flow
divergence-free. The nonlinear products are computed pseudo-spectrally via the 3/2-rule to
avoid aliasing errors. Spatial derivatives (in all three directions) are computed using a fifth
order upwind-biased method. The flow is advanced in time using the classic operator splitting
scheme in conjunction with a third order Runge–Kutta method [17] for the advective terms and
Crank-Nicolson for the wall-normal diffusion terms. The related elliptic solvers (for pressure
and diffusion) utilize the tensor product method [18]. The numerical grid is stretched in each
of the wall-normal directions using an algebraic map which concentrates gridpoints in the
corner regions of the duct. Further details of the simulation code may be found in [16] and the
references cited therein.

Huser and Biringen [16] previously developed this code and ran it with a spatial resolution
of (Nx , Ny , Nz) = 96× 101× 101. With this grid the wall-normal grid spacing is 1·8 <

1y+, z+ < 10. Their computed results of statistically stationary turbulence at Reτ = 600
were in excellent agreement with experimental data. We ran the same direct simulation code
for approximately 18D/uτ time units with somewhat higher streamwise resolution ofNx =
128, using as initial conditions a previously archived coarse grid flow field which was almost
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fully developed. The coarse grid data were first interpolated onto the current high resolution
grid and then after an adjustment phase and complete convergence to statistically stationary
turbulent flow we generated an archival database of 80 entire flow realizations spanning a
time interval of 11D/uτ . Thus, the individual flow fields are separated in time by an average
of1T = 0·1375D/uτ . (The realizations are not uniformly distributed in time as a result of the
way we saved some intermediate flow fields.) These instantaneous flow fields are then used to
evaluate two SGS turbulence models which are currently in use in large eddy simulations.

3. Filtered equations

The filtering approach to large eddy simulation entails a convolution of the governing equa-
tions with a low pass spatial filter which we denote

G(x, y, 1̄) = G
(

x− y

1̄

)
.

In this definition we assume that the filter width,1̄, is uniform and that the filter function
is translation invariant. This restricts the applicability of the filtering operation to unbounded
flow directions. The standard filters are the box, or top hat filter; the cut-off filter which is
generally only used in spectral computations and the Gaussian filter. In this work we focus on
both the one dimensional Gaussian filter given by

GG(x, 1̄) = 1

1̄

(
6

π

)1/2

exp(−6x2/1̄2)

and also the Fourier cut-off filter whose Fourier transform is

ḠCO(k, 1̄) =
{

1 for |k| ≤ π/1̄
0 for |k| > π/1̄

wherekc = π/1̄ denotes the cut-off wavenumber on the1̄ grid. For periodic problems the
Fourier transform of the Gaussian filter is given by

ḠG(k, 1̄) = exp(−k21̄2/24)

Equation (1) is discretized on a highly resolved spatial grid whose streamwise resolution
we denote byδ (with δ = Lx/Nx). We regard the direct numerical solution of these equations
on this grid to be an accurate representation of the true fluid velocity field. Upon filtering
Equation (1) in the streamwise direction with a filter of characteristic width,1̄, we obtain

∂ūi

∂t
+ ∂

∂xj
ūi ūj = 4δi1− ∂

∂xi
p̄ + 1

Reτ
∇2ūi − ∂

∂xj
τij (2)

and continuity

∂ūi

∂xi
= 0.

Here we define the unresolved subgrid-scale (SGS) stress tensor

τij = uiuj − ūi ūj − 1
3(ukuk − ukuk)δij
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(in this last expression for the exact SGS stress we have removed the deviatoric part which is
subsumed into the filtered pressure as it would be in an actual large eddy simulation). And, in
anticipation of the double- or test-filtering procedure introduced by Germanoet al. [1, 19] we
carry out a second filtering operation with a filter whose width,ˆ̄1, is larger than1̄, to obtain

∂ ˆ̄ui
∂t
+ ∂

∂xj
ˆ̄ui ˆ̄uj = 4δi1− ∂

∂xi
ˆ̄p + 1

Reτ
∇2 ˆ̄ui − ∂

∂xj
Tij

with

Tij = ûiuj − ˆ̄ui ˆ̄uj − 1

3

(
ûkuk − ˆ̄uk ˆ̄uk

)
δij .

In the next two sections we recapitulate the dynamic procedure for modelling the unresolved
terms in the large eddy Equations (Equation (2)).

4. Dynamic subgrid-scale models

The dynamic Smagorinsky SGS model (DSM) of Germanoet al. [1] has proven very suc-
cessful in LES of turbulence in canonical boundary layer flows such as in a plane channel.
This model is based on an eddy viscosity type linear relationship between the SGS Reynolds
stress tensor,τij , and mean resolved strain rate tensor,S̄ij . The model derives from the seminal
work of Smagorinsky [20] who applied the model with constant eddy viscosity to atmospheric
flow problems. Early applications of the dynamic model generally have been limited to flows
with two or three homogeneous directions in which periodic boundary conditions are applied
in numerical simulations. This restriction to homogeneous flows circumvents the issue of
commutation of spatial differentiation and grid filtering which is a pivotal requirement in high
accuracy large eddy simulations. For homogeneous flows (and uniform filter width) the two
operations commute whereas for inhomogeneous flows or for non-uniform filter widths this
operator commutation breaks down (although recently there have been technical advances in
reducing or eliminating the commutation error [21, 15]). In flows with inhomogeneous flow
development such as wall bounded turbulence the model has often been applied despite the
mathematical inconsistency of grid filtering in wall-normal directions. Nevertheless, attempts
have been made (in particular in finite difference calculations) [10, 14, 2] to investigate model
performance with the rationale that second order commutation errors may not be any more
significant than second order differencing errors which are employed in a great many complex
geometry flow solvers.

Thus far the DSM has not been testeda priori for the case of turbulent flow in a square
duct. Madabhushi and Vanka [8] performed LES for this flow geometry using the (constant co-
efficient) Smagorinsky model and found only fair agreement with experimental data. Balaras
and Benocci [9] subsequently performed LES using the DSM in conjuction with wall bound-
ary conditions and anad hocclipping procedure to stabilize the computations. Their results
indicated a fairly striking similarity between the original Smagorinsky model and the more
complex DSM except in the wall regions. Agreement of their computations with experiment
was reasonable at best, especially in the wall and corner regions. It is difficult therefore to
assess the relative roles played by the three separate SGS numerical procedures in their results.

As a first step in evaluating the DSM for streamwise corner flows we have performed so-
calleda priori tests [22] of the DSM for this flow. In thea priori approach to model testing,
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data from direct numerical simulation (DNS) can be utilized to make comparisons between the
exact SGS Reynolds stresses and the modelled stresses which would reasonably be computed
in a large eddy simulation. By reasonable we mean that there is no way of knowinga priori
what the modelled terms will be since in an LES the grid filtering is implicit in the numerical
discretization. However, one can generate plausible synthetic LES flow fields and hence make
an educated estimate of the modelled stresses and subgrid-scale dissipation by recourse to
consistent model testing as emphasized by Liuet al. [23].

4.1. SCALE-SIMILAR MODELS

In a separate approach to SGS turbulence modelling Bardina, Ferziger and Reynolds [11]
investigated models of the scale-similarity type. The scale-similar hypothesis posits that the
major contribution to SGS stress comes from the interaction of the largest subgrid scales and
the smallest resolved scales of motion. Namely, the scales which are ‘closest’ near the scale
cut-off in the model are the ones which contribute most to the SGS energy transfer dynamics.
This model was found to improve the correlation with the true subgrid stresses (compared to
the correlation coefficient using the Smagorinsky model) in thea priori analysis performed
by Bardinaet al. in homogeneous turbulence. In actual LES however, Bardinaet al. found it
necessary to add a Smagorinsky term to provide extra dissipation in order to obtain numerical
stability.

The decomposition of the velocity into resolved (filtered) and unresolved parts leads to the
following identities

ui = ūi + u′i; ūi = ¯̄ui + u′i . (3)

Substituting forui in the SGS stress tensor leads to the following decomposition

τij = Lij + Cij + Rij
whereLij ,Gij andRij are the Leonard, cross and SGS Reynolds stresses, respectively which
are given by

Lij = ūi ūj − ūi ūj Cij = ūiu′j + u′i ūj Rij = u′iu′j .
In general, for two functionsf andg it is not true that

fg = f̄ ḡ; (4)

however, as a closure scheme for LES Bardinaet al. hypothesized thatfg might at least be
proportional tof̄ ḡ for turbulent flow data. When this assumption is made forCij andRij the
following model results

Cij = CB
[ ¯̄uiu′j + u′i ¯̄uj] Rij = CBu′iu′j ,

whereCB is a constant. Now, if the second identity of Equation (3) is substituted we find that
the sum ofCij andRij is modeled as

Cij + Rij = βij = CB(ūi ūj − ¯̄ui ¯̄uj ),
whereβij is Bardina’s scale-similarity model for the unresolved SGS stress.

Speziale [24] has pointed out thatCB must equal unity in order for the Bardina model for
τij to be Galilean invariant. Recently, Horiuti [13] has argued that the assumption in Bardina’s
model is not as accurate as the hypothesis that
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fg = f̄ ḡ.
Since the filter removes scales below̄1 this last expression makes more sense (all scales
below the filter width are removed on both sides of the equation). In Bardina’s hypothesis,
the right hand side of Equation (4) produces scales smaller than the filter width which is
at odds with the LHS of the equation, which removes them. However, in an actual LES,
there is an additional filtering operation which is not evident in the mathematical analysis.
That is, when products are computed numerically there is either an explicit filter in pseudo-
spectral codes or an implicit filter for finite difference codes, since the LES grid can not
resolve the subgrid scales! This may explain the robustness of the simpler scale-similarity
assumption in Equation (4). We note though that Horiuti’s variant of the DTM (based on
this last hypothesis) involves three filtering operations and is almost 25% more expensive to
implement numerically.

4.2. MIXED MODELS

Germano [25] proposed a different way of defining the Leonard, cross and SGS Reynolds
stresses which results in each term being separately Galilean invariant (obtained by substitut-
ing ūi = ¯̄ui + u′i in the second term forτij ). Hence,

τij = Lmij + Cmij + Rmij ,
whereLmij ,C

m
ij andRmij are the modified Leonard, modified cross and modified SGS Reynolds

stresses, respectively. Explicitly, we have

Lmij = ūi ūj − ¯̄ui ¯̄uj , Cmij = ūiu′j + u′i ūj −
(
u′i ¯̄uj + ¯̄uiu′j

)
, Rmij = u′iu′j − u′i u′j .

In the dynamic mixed model of Zanget al. [10], Lmij is computed explicitly and the remaining
terms are modelled using the DSM. Salvetti and Banerjee [2] refined this model by introducing
a second dynamically computed coefficient for the scale-similar term in the model, yielding
the dynamic two parameter model (DTM). In essence, they assume that the modified cross
terms are proportional to the modified Leonard stress and once again retain the Smagorinsky
model forRmij (they note in addition that the second part ofRmij is negligible). Their DTM
has the advantage of providing an extra degree of freedom which can improve the ability
of the SGS model to provide ‘natural’ energy backscatter on the one hand and the correct
amount of SGS dissipation on the other. By ‘natural’ we mean that the energy backscatter is
not accounted for necessarily through negative eddy viscosity which is the case in the DSM.
This feature of the model greatly reduces the model dependence on the Smagorinsky part of
the model and hence also reduces the likelihood of numerical instability in an actual large
eddy simulation. More importantly perhaps, the mixed models remove the (false) implicit
assumption that the principal axes of the SGS stress tensor be aligned with those of the
resolved strain rate tensor.

Finally, we remark that Horiuti [13] has performed a more rigorous analysis than Sal-
vetti and Banerjee [2] where he has developed more sophisticated and rational SGS models
for the modified cross and SGS Reynolds stresses, respectively. Unfortunately, these models
are more expensive to implement (as mentioned already) and his results indicate only a 5%
improvement in correlation coefficients compared with those of the DTM of Ref. [2].
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5. Model computation

In performing the dynamic procedure we construct a hierarchy of velocity fields coupled to a
hierarchy of spatial grids as follows

ui = archived DNS flow data at grid-scaleδ,

ūi = filtered DNS data at grid-scalē1 = 2δ,

ˆ̄ui = twice filtered DNS data at grid-scalē̂1 = 21̄.

(We also confine our attention to filter width ratios which are powers of 2). Note that the

intermediate grid-scale,̂1, satisfies ˆ̄12 = 1̂2 + 1̄2 in the case of the Gaussian filter and so

1̂ = √31̄ in the current investigation. For the spectral cut-off filter we have that1̂ = ˆ̄1. We
restrict filtering to thex-direction because filtering commutes with spatial differentiation only
in this direction for this flow. We emphasize here that ina priori tests we have in a sense got all
three velocity fields available at the finest grid level,δ. However, when modelling the subgrid
and subtest-scale stresses we must compute derivatives based only on information residing at
the coarser mesh locations [23], the rationale being that in an actual LES the data would only
be available on thē1 grid and not theδ grid. To increase our test sample size we can however
compute these coarse mesh derivatives at every fine grid location (using data on the coarser
meshes).

5.1. CONSISTENT MODEL TESTING

In order to performa priori model tests it is necessary to compute terms such asS̄11 = S̄xx =
∂ū/∂x (such a term occurs in the dynamic computation of the local eddy viscosity). Care
must be exercised in this regard so as to avoid incorrectly computing this quantity based on
the values of̄u on the DNS grid. Liuet al. [23] have emphasized this need to be consistent
when performinga priori tests using highly resolved flow data. In their work on turbulent
jets they computed the spanwise rate of strain element on the1̄ grid, S̄33 = ∂w̄/∂z by
invoking continuity. The other two components involvingz-derivatives,S̄13 and S̄23, were
approximated. We note here that even if one computes such derivatives on this coarser grid
(the actual LES grid) there can still be errors depending on the type of grid-filter.

For example, for a periodic problem such as the present duct flow, suppose we haveu at
2N streamwise gridpoints in physical space. The Fourier transform,û, therefore has modes in
the range[−(N − 1),N]. If we apply the Gaussian filter to obtain̄u then the SGS frequency
content(|k| ≥ N/2) is non-zero (physical scales in the range[δ, 1̄] remain). To coarsen̄u
to the1̄ grid, we transform back to physical space and copy/delete every second grid value
to formN values forū. Now, despite the coarsening operationū still has SGS information in
it, in the form of ‘aliasing’ error, so to speak. This means that we sample a function which
we know has scales in the range[δ, 1̄]. Therefore, we need to completely remove all subgrid
scales by also cutting off the SGS frequency content (|k| ≥ N/2 in spectral space). Hence,
if we do not completely remove the SGS modes (when using the Gaussian filter) then the
velocity field will contain this kind of aliasing error. (This error vanishes however for the case
of the sharp cut-off filter in spectral calculations).

Thus, it is important to recognize that under the ‘consistent’ approach there will possibly be
aliasing errors in the resolved strain rate (and, in particular, divergence errors) if the strain rate
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is computed without completely filtering out the SGS frequency content. Since the objective
of a priori tests is to derive synthetic LES flow fields it is important when utilizing DNS data
to preserve the divergence-free character of the flow and not to introduce spurious aliasing
errors. Hence for the duct DNS data which are spectral-based inx we propose to modify the
Gaussian grid- and test-level filters as follows in spectral space

ḠG(k, 1̄) =
{

e−k21̄2/24 for |k| ≤ π/1̄
0 for |k| > π/1̄

(and a similar expression for the Fourier transform of the test-level filter). Note that the above
filter is in fact the convolution of the cut-off filter (tocompletelyremove scales shorter than
1̄) with the usual Gaussian filter. We emphasize that the use of this filter in no way vitiates
the essential ingredients of the dynamic procedure for length scales larger than1̄. We also
remark that this filter is not strictly positive ( with respect to the DNS grid) since the cut-off
part in spectral space corresponds to an oscillatory sinc function in physical space.

5.2. DYNAMIC PROCEDURE

Following the approach of Salvetti and Banerjee [2] we adopt the dynamic two-parameter
mixed model (DTM) and consider the original DSM of Germanoet al. [1] as a special case.
To avoid confusion we denote the ‘exact’ subgrid- and subtest-scale stresses byτij andTij .
The models which correspond to these terms we denote with a superscript M. That is, we
model the ‘exact’ SGS stress tensor

τij = uiuj − ūi ūj − 1
3(ukuk − ūkūk)δij

by

τMij = K
{
ūi ūj − ¯̄ui ¯̄uj − 1

3(ūkūk − ¯̄uk ¯̄uk)δij
}− 2C1̄2‖S̄‖S̄ij ,

where‖S̄‖ = (2S̄ij S̄ij )1/2. For the ‘exact’ sub-test scale terms

Tij = ûiuj − ˆ̄ui ˆ̄uj − 1
3

(
ûkuk − ˆ̄uk ˆ̄uk

)
δij

we use the same mathematically consistent modelling assumption proposed by Vremanet al.
[26] (essentially replacingui with ˆ̄ui underneath all filtering operations) to yield

T Mij = K{
̂̄̂
ui ˆ̄uj − ˆ̂̄̄ui ˆ̂̄̄uj − 1

3

(
ˆ̂̄uk ˆ̄uk − ˆ̂̄̄uk ˆ̂̄̄uk

)
δij } − 2 ˆ̄12

C‖ ˆ̄S‖ ˆ̄Sij ,

where‖ ˆ̄S‖ = (2 ˆ̄Sij ˆ̄Sij )1/2. At this point we employ the Germano identity and a least squares
averaging approach in the streamwise direction to evaluate the model ‘constants’,K andC.
For the exact equations we define the ‘Germano’ tensor

Lij = Tij − τ̂ij = ̂̄uiūj − ˆ̄ui ˆ̄uj − 1
3(
̂̄ukūk − ˆ̄uk ˆ̄uk)δij ,

which is a computable quantity in a given large eddy simulation. In order to evaluate the model
constants we minimize the mean square error between this tensor and its model

LMij = T Mij − τ̂Mij ≈ Lij .
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Figure 2. Duct cross-section with wall,OV , and corner bisectors,OD, indicated.

Hence, we find the least-squares solution to

T Mij − τ̂Mij = Lij .
If we now let

T Mij − τ̂Mij = KMij + CAij ,

where

Mij =
{ ̂̄̂
ui ˆ̄uj − ̂̄uiūj−}+ { ̂̄̄ui ¯̄uj − ˆ̂̄̄ui ˆ̂̄̄uj}− 1

3

[{
ˆ̂̄uk ˆ̄uk − ̂̄ukūk}+ { ¯̂̄uk ¯̄uk − ˆ̂̄̄uk ˆ̂̄̄uk}] δij

and

Aij = −2 ˆ̄12‖ ˆ̄S‖ ˆ̄Sij + 21̄2‖̂S̄‖S̄ij .
then the least squares solution is given by solving the following 2× 2 algebraic system (for
eachy, z, t)

〈MijMij 〉K + 〈AijMij 〉C = 〈LijMij 〉 (5)

〈MijAij 〉K + 〈AijAij 〉C = 〈LijAij 〉 (6)

where〈·〉 denotes simple averaging in the homogeneous streamwise direction. Note that the
original DSM of Germanoet al. is recovered simply by settingK = 0 and utilizing Equation
(6).

6. Results (DSM)

As a firsta priori test for the current duct flow database we setK = 0, i.e., we study the
dynamic Smagorinsky SGS model (DSM). In presenting our results we focus mainly on the
streamwise-averaged data in the cross-section of the duct together with line plots along both
the vertical wall bisector and the upper left corner bisector indicated by the linesOV andOD
in Figure 2.

In Figure 3 we illustrate the result of applying both the cut-off filter and the modified
Gaussian filter to a single flow realization. The contours ofC(y, z, t)1̄2 have been plotted
in non-dimensional units of 10−5. From both parts of the figure it is apparent that there is
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Figure 3. Contours ofC(y, z, t)1̄2(×105) for the DSM for a single flow realization using (a) the sharp Fourier
cut-off filter and (b) the modified Gaussian grid filter. Contour intervals are equally spaced at 2×10−5 and negative
contours are indicated by a dashed line.

significant backscatter(C(y, z, t) < 0) in the central region of the duct for this dataset. The
protrusions of non-zeroC into the fours corners is also evident illustrating how the near-corner
flow has a greater dynamic role in SGS dissipation than the near-wall regions close to the wall
bisectors. The asymptotic decay to zero ofC(y, z, t) as the duct walls are approached is also
clear from each figure. There are differences between parts (a) and (b) of the figure indicating
that filter type is having an effect – at least for instantaneous flow realizations. Small scale
variations are more evident for the cut-off filter and the near-wall behavior is also different
compared with the modified Gaussian filter of part (b) in the figure. The smoother contours in
part (b) corresponding to the modified Gaussian filter might have ramifications for an actual
LES where spatial derivatives ofC can have an important bearing on the numerical stability
of the LES. Overall, the use of the cut-off filter results in higher near-wall SGS dissipation
compared with the use of the modified Gaussian filter.

In Figure 4a we have plotted a vertical cross-cut ofC(y, z, t)1̄2 at the wall bisector,OV ,
wherez = 1/2, z+ = 300 for another flow realization. The figure serves to provide more
graphical evidence of the comments made in the previous paragraph. In particular, we note
the central region of the duct whereC < 0 for the case of the modified Gaussian filter (dotted
curve). We also note that the peaks inC are somewhat larger for the modified Gaussian filter
than for the Fourier cut-off filter. In part (b) of the figure we have plotted a diagonal line cut
for the same flow realization. The abscissa,d+, is the diagonal distance, in wall units, from
the upper left corner of the duct. The figure indicates that the SGS model is essentially zero
for d+ < 50. Over the extended region fromd+ ≈ 50 tod+ = 300 shown in Figure 4b the
Fourier cut-off filter again results in a larger (and positive)C than does the modified Gaussian
filter. The modified Gaussian filter also gives a SGS model with a significant proportion of
localized backscatter from subgrid to resolved scales (although this in turn depends on the
local magnitude of‖S̄‖).
6.1. SGSDISSIPATION

The primary role of any eddy viscosity SGS model is to provide dissipation of turbulent kinetic
energy via enhanced turbulent viscosity. The SGS ‘dissipation’ term in the LES equations is
given by
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Figure 4. Variation ofC(y, z, t)1̄2 along (a) the vertical wall bi-sectorz = 1/2, z+ = 300 and (b) along the
upper left corner bisector. Results are for a single flow realization. Solid curve is for the sharp Fourier cut-off filter
and the dotted curve is for the modified Gaussian filter.

Figure 5. Variation of ‘exact’ (solid curves) and modelled (dotted curves) SGS dissipation (εE andεM ) atx = 0
for a single flow realization: (a), along the wall bisector,z = 1/2, z+ = 300; and (b), outward along the upper left
corner bisector. This data is for the same flow realization as in Figure 4. The DNS data have been filtered using
the modified Gaussian filter.

ε = τij S̄ij .
This quantity acts as either a source or sink depending on whetherC(y, z, t) is negative
or positive, respectively. We distinguish between the ‘exact’ SGS dissipation,εE, i.e., that
predicted by the filtered DNS data, and the modelled SGS dissipation,εM , that is given by

εM(x, y, z, t) = −2C(y, z, t)1̄2‖S̄‖S̄ij S̄ij = −C(y, z, t)1̄2‖S̄‖3

In Figure 5 we have plotted the variation of bothεE andεM for the same single flow realization
that was used for Figure 4 and at a singlex-station (the figure depicts data which have been
filtered using the modified Gaussian filter). Part (a) shows the variation along the vertical wall
bisector,OV , while part (b) shows the variation along the upper left corner bisector,OD.

The figure demonstrates clearly that in an instantaneous and spatially localized sense there
is at best a very poor correlation between the exact and the modelled SGS dissipation. In part
(a) we can see that there is some good agreement ofεE andεM only in the regiony+ < 10
or so. We notice also that the magnitude of the modelled SGS dissipation does not compare
favorably with the typical magnitude of the exact quantity. In part (b) we see that the model
is providing essentially no SGS dissipation in the corner region,d+ < 50. Although these
figures are for a single station and a single instantaneous realization they are representative of
the model performance in general.
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Figure 6. Variation of exact (solid curves) and modelled (dotted curves) streamwise-averaged SGS dissipation
(〈εE〉x and〈εM 〉x ) for a single flow realization versus distance along the corner bisector. (a), using the Fourier
cut-off filter and (b), using the modified Gaussian filter for a single flow realization.

We comment here that this result indicates, or predicts, very poor phase representation in
an actual LES using the DSM: the SGS model might produce sufficiently accurate integrated
results such as mean skin friction and Reynolds stress but the LES flow dynamics will most
likely be entirely disparate from the true flow evolution since the SGS dissipation term in the
governing equations is so inaccurate.

6.2. SPATIAL MEAN SGSDISSIPATION

In Figure 6 we have plotted the streamwise-averaged SGS dissipation for the two filter types
for another flow realization. Also shown for reference is the exact SGS dissipation in each
case. We can see a significant improvement in agreement between the exact and the modelled
SGS dissipation although there are still some clear differences. We note that the modified
Gaussian filter shown in part (b) appears to yield better agreement (in this case). In contrast
to the instantaneous behavior ofεM in relation toεE we can see in Figure 6a that the Fourier
cut-off filter is predicting an excess in SGS dissipation. For the instantaneous data shown in
Figure 5,εM was smaller in magnitude thanεE. This trend is in accord with the underlying
principle of the DSM: to provide a statistical balance between production and dissipation. We
also note that for both filter types there is a net average (average inx) backscatter (〈εM〉x > 0)
at several spatial locations alongOD despite the fact that the exact value〈εE〉x is almost
strictly negative for this particular realization.

6.3. ENSEMBLE-AVERAGE SGSDISSIPATION

In Figure 7 we have plotted the ensemble-averaged exact and modelled SGS dissipation,〈εE〉
and〈εM〉, where the average is computed overNx = 128 streamwise stations, eight similar
octants and eighty flow realizations. We see from both parts of this figure that the filter type
is not inconsequential. Both the exact and modelled SGS dissipation are strongly influenced
by the specific filter chosen. Along the wall bisector (Figure 7a) we can see that both filters
yield approximately the same result for modelled SGS dissipation despite the fact that they
each yield quite different results for the exact SGS dissipation. However, in the corner region
(Figure 7b) we see that the results for〈εM〉 depend on the choice of grid filter. For either
filter there is roughly a factor of 2 disparity between〈εE〉 and〈εM〉 along both the wall and
corner bisectors. It is also interesting that along the corner bisector we find that the Fourier
cut-off filter yields 〈εM〉 < 〈εE〉 whereas the modified Gaussian filter yields〈εM〉 > 〈εE〉.
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Figure 7. Ensemble-averaged SGS dissipation for both the Fourier cut-off filter and the modified Gaussian filter
along (a) the wall bisector and (b) along the corner bisector. Both the exact and modelled SGS dissipation is
plotted for each filter type. In the legend the Fourier cut-off filter and the modified Gaussian filter are denoted CO
and MG, respectively.

That is, the Fourier cut-off filter overpredicts SGS dissipation while the modified Gaussian
filter underpredicts it in the corner region of the flow. As yet, we do not have an explanation
for this dependence on the filter type.

6.4. CORRELATION COEFFICIENT

The overall success of a SGS model is often characterized in terms of the correlation coef-
ficient of the modelled dissipation with the true, exact SGS dissipation (modulo the explicit
grid filter). Thus we define

ρ(ε) = 〈(εM − 〈εM〉)(εE − 〈εE〉)〉
〈(εM − 〈εM〉)2〉1/2〈(εE − 〈εE〉)2〉1/2 .

In Figure 8 we have plotted the spatial variation ofρ(ε) alongOV andOD for both the
Fourier cut-off filter and the modified Gaussian filter. From this figure we see very clearly
that the correlation for the DSM is very poor regardless of filter type withρ(ε) in the range
0–0·2. The modified Gaussian filter correlates somewhat better especially in the regionsy+,
d+ < 100 or so but is still on a par with the results found previously in similar studies of plane
channel turbulence. In light of this result, we conclude that for spectral-based simulations the
modified Gaussian filter is the superior filter especially in the regiony+, d+ < 150.

7. Results (DTM)

In this section we present results for computations performed using the complete DTM (K 6=
0). We used the modified Gaussian filter for these tests and note here that the scale-similar
part of the SGS model is identically zero if one uses the Fourier cut-off filter. In this case,
ūi = ¯̄ui and hence, numerically, in a pseudo-spectral LESūi ūj = ¯̄ui ¯̄uj . The RHS of this last
expression generates Fourier modes above the spectral cut-off, but they are cut-off implicitly
by the finite numerical discretization itself.

An example of the Smagorinsky coefficient,C, computed using the DTM is shown in
Figure 9 together with the correspondingC computed via the DSM (modified Gaussian filter).
The order of magnitude is the same in each case but, significantly, for the DTM we see that
C > 0 almost throughout the entire domain. We have found this to be true in nearly all other
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Figure 8. Correlation coefficient for SGS dissipation along (a) the wall bisector and (b) the corner bisector. Solid
curves denote results based on the Fourier cut-off filter and dotted curves denote results based on the modified
Gaussian filter.

Figure 9. Smagorinsky coefficient,C, for a single
flow realizationversusdistance along the wall bisector.
Solid curve: DSM (modified Gaussian filter) and dotted
curve: DTM.

Figure 10. Streamwise-averaged SGS dissipation,
ε〈(x, y, z, t)〉x , for a single flow realizationversus
distance along the corner bisector. Solid curve: ex-
act; dotted curve: DSM (modified Gaussian filter) and
chain-dashed curve: DTM.

realizations. The fairly rapid fluctuations inC with the DSM are removed with the DTM. Thus,
in an actual LES the DTM will most likely produce a more stable (numerically) SGS model.
Firstly, the absence of large negativeC will produce a positive total viscosity. Secondly, the
reduction in slope (∂C/∂y etc.) will also help to stabilize numerical implementation.

The second parameter,K, in the DTM obtains an average value of approximately 1·75
in the cross-section of the duct with slightly higher values near the walls and corners (K≈
2.·0 − 2·5). This is consistent with Horiuti’s value (K ≈ 1·75) for a priori tests of plane
channel flow at Reτ = 180 [13]. Salvetti and Banerjee [2] obtainedK = 1·3 in a priori tests of
free-surface plane channel turbulence at Reτ = 171 (based on the total channel depth). Hence,
their Reτ is 85·5 in the more common scaling based on channel half-height. In actual LES,
Salvettiet al. [12] studied the same problem with the same Reτ but with decaying turbulence
and obtainedK ≈ 1·2 throughout the channel depth. The difference is most likely a result of
different Reτ . We note that departures ofK from unity indicate the relative contribution of the
modified cross terms compared with the modified Leonard tensor but that the scale-similarity
hypothesis is still being used (to model the cross terms).
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Figure 11.Ensemble-averaged SGS dissipation versus
distance along the corner bisector. Solid curve: ex-
act; dotted curve: DSM (modified Gaussian filter) and
chain-dashed curve: DTM.

Figure 12.Correlation coefficient for SGS dissipation
along the corner bisector for the DTM.

In Figure 10 we have plotted the streamwise-averaged exact and modelled SGS dissipation
for a single flow realization. For comparison we have also plottedεM based on the DSM with
modified Gaussian filter. The abscissa is the diagonal distance alongDO measured in wall
units. We see that the DTM result comes into close agreement with the exact data almost
throughout the entire region. In contrast, the result from the DSM is markedly in error. The
DSM predicts a large region of backscatter (in 40< d+ < 60 and 120< d+ < 185) whereas
the DTM captures the (correct) forward scatter which characterizes this region at this instant.
Both in the region 0≤ d+ < 60 and alsod+ > 200 the DTM is in excellent agreement with
the exact data. In the remaining region 60< d+ < 200 the model’s performance is not quite
as good but it is still dramatically superior to the DSM.

7.1. ENSEMBLE-AVERAGE SGSDISSIPATION

The corresponding ensemble-averaged SGS dissipation is shown in Figure 11 where, again,
we have included the DSM result for comparison. The DTM exhibits a significant improve-
ment over the DSM (with modified Gaussian filter). The logarithmic scaling of the abscissa
highlights the remaining region where the DTM is not in excellent agreement with the exact
data (30< d+ < 200 or so). However, even here the DTM predicts the SGS dissipation to
within 30% (at worst) while the DSM is at best within in 75% of the exact data. In the outer
region of the flow the DTM show an even more striking agreement with the exact data while
the DSM is in error both quantitatively and qualitatively (incorrectly predicting backscatter
(on average) from 280< d+ < 424·26).

The corresponding correlation coefficient (alongDO) is plotted in Figure 12. The almost
uniform value ofρ(ε) ≈ 0·875 for the DTM should be compared with the valueρ(ε) < 0·2
for the DSM. This result together with improved agreement in instantaneous flow realizations
(for SGS dissipation) strongly suggests that the DTM will yield a very good SGS modeliza-
tion for flows in the square duct geometry. The removal of incorrectly predicted regions of
backscatter (compared with DSM) should also mitigate numerical instability problems in an
actual LES for these types of flow.
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8. Conclusions

We have analyzed a large computational database for incompressible duct flow at Reτ = 600
in order to assess the probable performance of both an eddy viscosity and a mixed type
dynamic SGS turbulence model in a LES. We have clarified a technical point regarding the
consistenta priori test approach [23] for spectral-based data and we arrived at a modified
Gaussian grid filter which removes aliasing errors when derivatives are computed on the
(synthetic) LES grid. This property is important in preserving the divergence-free character of
the synthetic LES flow fields that are generated in a consistent model testing approach.

In accord with prior studies on channel turbulence we have found in thesea priori tests
that the DSM correlates very poorly with the exact SGS stress (as inferred from the correlation
of SGS dissipation). We also found that the filter type did have an effect on the model per-
formance, notwithstanding the poor correlation in either case. The DSM performance in the
corner regions of the duct was essentially the same as in the wall region near the wall bisector
with a correlation coefficient (for SGS dissipation) of at best 0·2.

We also tested the dynamic two parameter model (DTM) proposed by Salvetti and Baner-
jee [2] and found that it provides excellent agreement over most of the duct cross-section.
The correlation coefficient of SGS dissipation was approximately 0·9 for most of the duct.
Instantaneous flow realizations also indicate that the DTM is quite successful in capturing
the instantaneous SGS energy transfer dynamics near the walls, corners and in the outer flow.
However, the performance is somewhat diminished in the outer log regions. The Smagorinsky
coefficient in the DTM is generally positive indicating that that part of the model is capturing
forward scatter while the majority of the backscatter is being modelled by the scale-similar
part. In general, false predictions of backscatter in the DSM are removed with the use of the
DTM. The Smagorinsky coefficient of the DTM is also smoother than that of the DSM which
will have ramifications in an actual LES. These two properties of the DTM suggest that it
will perform well in an actual LES, primarily due to the superior physical model predictions
but also because of the superior numerical stability properties which follow from a smoother
positive Smagorinsky coefficient. Recenta posteriori tests of two parameter mixed models
have in fact borne this out for a number of flows [12, 13].

The DTM has shown to be promising towards development of robust, accurate and physi-
cally correct LES. To make the model more general, further work needs to be done. First, there
is the need to devise an accurate (4th order or better) method for filtering in inhomogeneous
directions. Second, focus must also be on high Re and the associated required wall resolution.
Only when these two issues are resolved can LES be applied for industrial flows as a predictive
tool.
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